Experiments confirm that Gaussian smoothing of the objective function can be derived by an integral operation in image space with closed-form kernels. These blur kernels automatically turn out to be spatially varying (similar to human’s retina) for any non-displacement motion. Experiments confirm that Gaussian smoothing of the objective function outperforms Gaussian smoothing of images.

OBJECTIVE vs. SIGNAL SMOOTHING

Illustrative Example 1D Scale Alignment

We use 2-norm of signals difference as the alignment objective

\[
\int_a^b (f(x) - g(x))^2 \, dx
\]

Signal Smoothing

Objective Smoothing

EFFICIENT COMPUTATION OF SMOOTHED OBJECTIVE

Given a domain transformation \(\tau : X \times \Theta \to X' \), where \(X = \mathbb{R}^n \) and \(\Theta = \mathbb{R}^m \). Is there any \(\omega_{\tau} : X \times X' \to \mathbb{R} \) satisfying the following integral equation?

\[
\forall f, \quad \left[f(\tau(x, \theta)) \ast k(\cdot ; \sigma^2) \right] (\theta) = \int_X f(y) \omega_{\tau}(\theta, x, y) \, dy
\]

CHECKING CORRECTNESS OF KERNELS

The alignment objective function:

\[
h(\theta) = \int_X f(\tau(x, \theta)) \, dx
\]

The smoothed alignment objective:

\[
z(\theta) = \int_X \left(f(\tau(x, \theta)) \ast k(\cdot ; \sigma^2) \right) \, dx
\]

1: Input: \(k : X \to \mathbb{R} \), \(\tau : X \times \Theta \to X' \), \(\Theta = \{ \theta_k \} \) for \(k = 1, \ldots, K \) s.t. \(\sigma_{k-1} < \sigma_k \)
2: for \(k = 1 \to K \) do
3: \(\theta_k = \) Local maximizer of \(z(\theta ; \sigma_k) \), initialized at \(\theta_{k-1} \)
4: end for
5: Output: \(\theta_K \)

EXPERIMENTS

Aligning the rectified view of each scene (shown below) against its perspective distorted copy.

- Horizontal Axis The degree of homography in effect, the larger, the more drastic the perspective.
- Vertical Axis Normalized correlation attained after algorithm’s convergence.

CLOSED FORM KERNELS FOR COMMON TRANSFORMATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>(\tau(x, \theta))</th>
<th>(\omega_{\tau}(\theta, x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td>(x + d)</td>
<td>(\tau(x, \theta)) (y, \sigma^2)</td>
</tr>
<tr>
<td>Translation-scale</td>
<td>(a \cdot x + b)</td>
<td>(\tau(\cdot ; \theta)) (y, \sigma^2)</td>
</tr>
<tr>
<td>Affine</td>
<td>(A \cdot x + b)</td>
<td>(\tau(\cdot ; \theta)) (y, \sigma^2)</td>
</tr>
<tr>
<td>Homography</td>
<td>(\frac{A \cdot x + b}{</td>
<td>A</td>
</tr>
</tbody>
</table>